Diversität und genetische Vielfalt in der Hundezucht

FERAGEN GmbH

Dr. Anja Geretschläger

Übersicht

- Genetische Varianz Was ist das?
- Ursachen Verlust genetischer Diversität
- Gesundheitliche Probleme in der Hundezucht
 - Autoimmunerkrankungen
 - DLA-Gene
 - Maßnahmen zum Erhalt der Diversität

Genetische Varianz

Genetische Ausstattung ist ein Werkzeugkasten

Je größer die Auswahl umso vielfältiger die Möglichkeiten

Geringe genetische Varianz:

- das Notwendigste ist vorhanden
- unter bestimmten Umständen ist adäquates Werkzeug gegeben
 - veränderte Umweltbedingungen -> Funktionsstörungen > Krankheit

Verlust der genetischen Diversität

- Genetischer Flaschenhals
- Etablierung von Rassen
- Geschlossene Zuchtpopulationen
- Popular Sires
- Inzucht

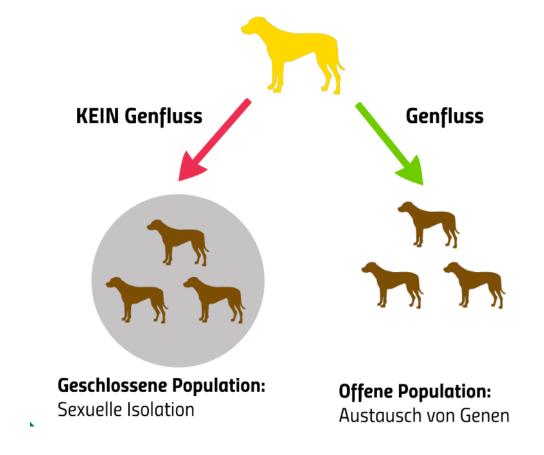
Genetischer Flaschenhals

Verminderung der genetischen Diversität durch ein Ereignis

Genetische Flaschenhälse

Domestikation

Erster Flaschenhals 15.000 v. Chr. Anpassung an wechselseitige Beziehung zum Menschen

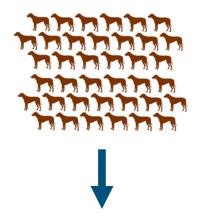

Etablierung von Rassen

Einhaltung von Standards
Wettbewerbe
Hundeausstellungen
Streben nach idealer Rasseform

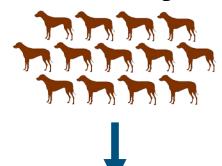
Etablierung von Rassen

Е

Geschlossene Zuchtpopulation


Gezielte Selektion – Ausschluss von genetischem Material Rasseideale führen zu einer weiteren genetischen Isolation Subpopulationen können gen. Diversität innerhalb von Rassen einschränken

Rassestandards


- Extreme Standardisierung von Rassen
 - Übertriebene morphologische und funktionelle Merkmale
 - Verringerung der Effektiven Zuchtpopulation

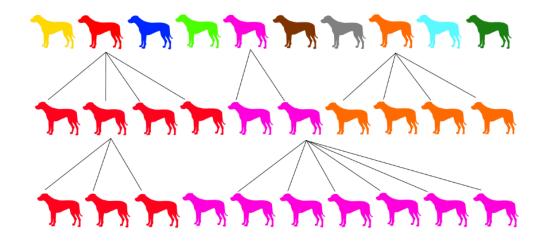
Effektive Zuchtpopulation

Gesamtpopulation

Für die Zucht vorgesehen

Gesundheitliche Voraussetzungen

Gesundheitliche + Phänotypische Voraussetzungen



Nur wenige Hunde gehen tatsächlich in die Zucht und geben ihr genetisches Material weiter

Berechnung Effektive Zuchtpopulation:

$$N_e = rac{4N_fN_m}{N_f+N_m}$$

Ne – effektive Zuchtpopulation Nf – Zahl der weibliche Tiere einer Population Nm – Zahl der männliche Tiere einer Population

- Fehlende Decklimitierungen
- Große Anzahl von Nachkommen
 - Reduktion von Diversität in Nachfolgegenerationen
- Berücksichtigung von Rassegegebenheiten

Popular Sires

Übermäßiger Zuchteinsatz einzelner Rüden

Inzucht

Zucht von 2 Hunden die näher verwandt sind, als zwei zufällig gewählte Hunde

Wie viel Inzucht verträgt eine Population?

3 wichtige Faktoren:

- genetische Bürde d. Population Art/Zahl von Defektgenen
- Umweltbedingungen gleichbleibend/wechselnd?
- Art/Umfang der Selektion Ausschluss inzuchtgeschädigter Tiere

Probleme aufgrund von Diversitätsverlust

- Genetische Erkrankungen
- Verminderte Anpassungsfähigkeit
- Autoimmunerkrankungen

DAHER:

Erhalt der Diversität im Zuchtgeschehen

Die Hundezucht krankt

Bekannte genetische Erkrankungen/Merkmale

ca. 913

Testbare genetische Erkrankungen/Merkmale

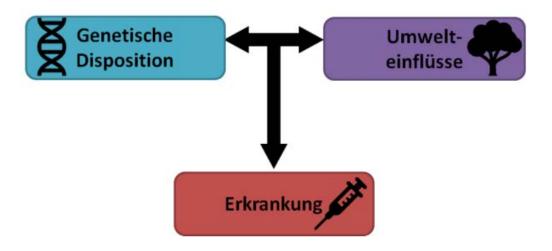
ca. 417

Viele Erkrankungen können aufgrund der Komplexität nicht getestet werden

Autoimmunerkrankungen

<u>Das Immunsystem richtet sich gegen den</u> <u>eigenen Körper</u>

Autoimmunerkrankungen

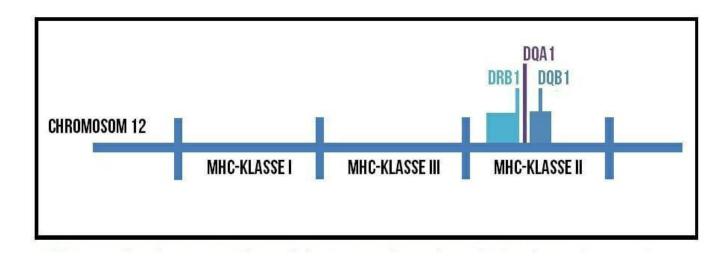

Jedes Gewebe kann betroffen sein

- Caniner diabetes mellitus
- Nebennierenrindeninsuffizienz Morbus Addison
- Hämolytische Anämie
- Chronische inflammatorische Hepatitis
- Symmetrische lupoide onychodystrophie
- Autoimmune lymphatische Thyreoiditis
- Meningoenzephalitis (nekrotisierend)
- Chronische superfizielle Keratitis

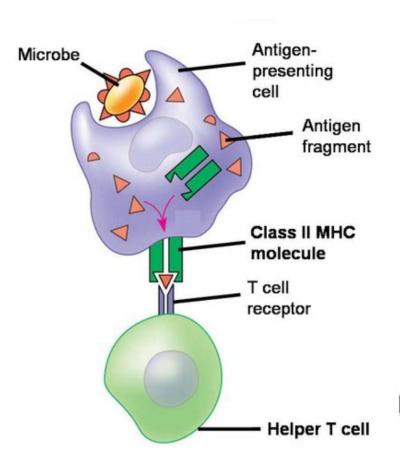
Autoimmunerkrankungen

Komplexe Erkrankungen

Viele Bakterien/Viren haben antigene Strukturen die Autoantigenen ähneln.


Theorie der "Molekularen Mimikry"

Beispiel Mensch: Multiple Sklerose verursacht durch Vorinfektion von Erregern wie Masernvirus, Epstein-Barr-Virus, Hepatits-B-Virus


DLA -Dog Leukocyte Antigen

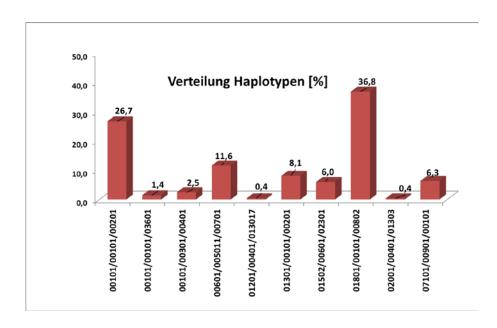
- Unerlässlicher Bestandteil des Immunsystems
- Zusammenhang mit Autoimmunerkrankungen

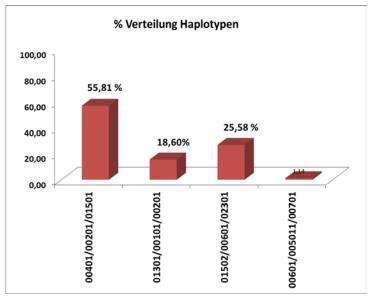
MHC II – <u>Major Histocompatibility Complex II</u>

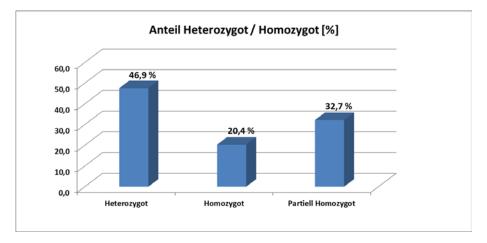
DLA-Proteine

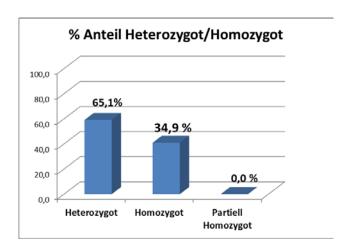
DLA Gene bilden den Bauplan für die DLA Proteine (Class II molecule)

Was dem Immunsystem präsentiert wird hängt von den individuellen DLA-Typen ab

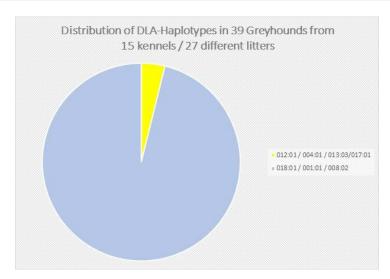

Einschränkung der Diversität bei zahlreichen Rassen


Durchschnittlich
7 DLA-Genkombinationen
pro Rasse


DLA-DQB1 DLA-DQB1


161 30 79

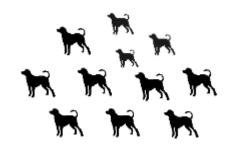
DLA-Gene im Rasseüberblick



Homozygot oder Heterozygot

Rasse	Anzahl Haplotypen
Bearded Collie	6
Beauceron	9
Belgischer Schäferhund	10
Collie KH	2
Kromfohrländer	5
Leonberger	9
Österreichischer Pinscher	9
Rhodesian Ridgeback	10

Geografische Varianzen


Geografische Varianzen

Meist in der Verteilung der Haplotypen zu beobachten

Individuum vs. Population

- Risikoverminderung von Autoimmunerkrankungen
- Förderung von Heterozygotie
- Anpaarungsempfehlungen

- Aufrechterhaltung genetischer Varianz
- Aufrechterhaltung seltener Haplotypen
- Förderung d. Anpassungfähigkeit

Warum DLA-Gene?

- Unerlässlicher Bestandteil des Immunsystems
- Zusammenhang mit Autoimmunerkrankungen
- Heterozygotie höhere Resistenz gegen Infektionen
- Mindestanzahl von Haplotypen ist für das langfristige Überleben einer Population notwendig
- Limitierte Anzahl erhöht die Gefahr einer Auslöschung der Rasse durch neue Erkrankungen

Erhaltungs-Maßnahmen

Diversität

Einkreuzungen von Fremdrassen

- Detaillierte Planung
- Bereitschaft zur Teilnahme
- Auswahl einer passenden Rasse (Gesundheit)
- Rückkreuzungsstrategien

Outcross

- Verpaarung unverwandter Hunde
- Hunde aus verschiedenen Linien gleicher Rasse
- Ausl. Linien oft fehlende Informationen über Gesundheit
- Wie genetisch unterschiedlich sind die Hunde tatsächlich?

Bestehenden Genpool nutzen

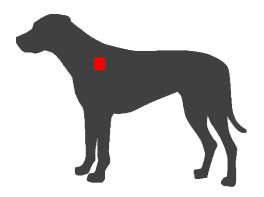
- Messgröße für genetische Diversität
- Typisierung von Hunden in der Zucht
- Auswertungsmodelle

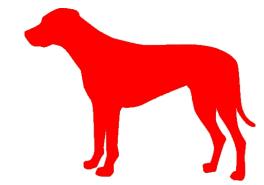
Einkreuzungsprojekt ProKromfohrländer

F2 Generation Gen. COI – 13 % Heterozygotie – 36 % F1 Generation Gen. COI – 0 % Heterozygotie – 47 %

Dansk/Svensk Gardhund

F3 Generation Gen. COI – 13 % Heterozygotie – 40 %


F4 Generation Gen. COI – 19 % Heterozygotie – 36 %


Reinrassig Gen. COI – 22 % Heterozygotie – 34 %

Basisdaten für Genetische Diversität

Basierend auf einzelnen Genen DLA-Gene

Basierend auf gesamter DNA tausende genetische Marker

Genetische Diversität auf Gesamt-DNA-Ebene

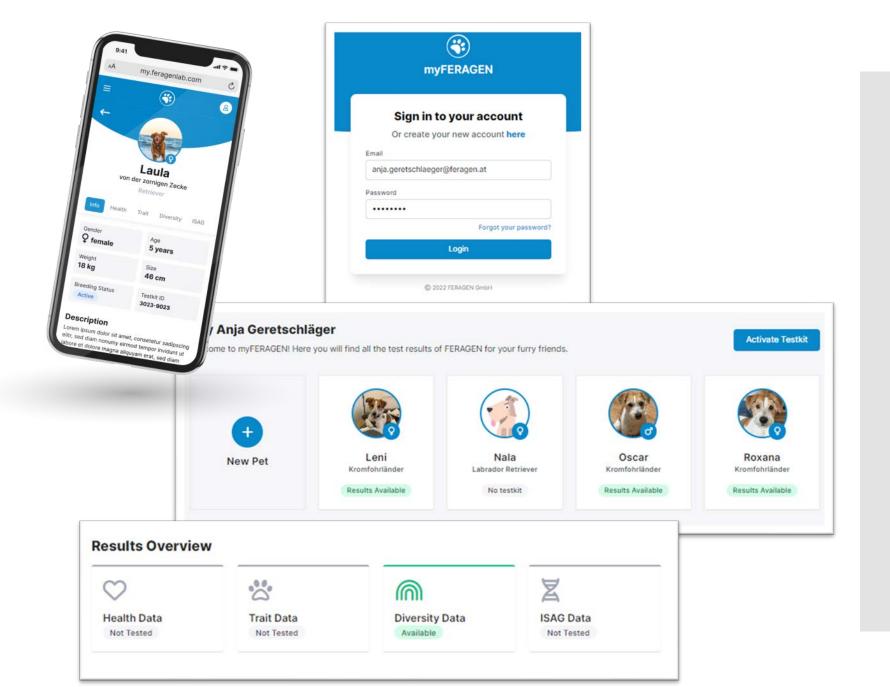
Nicht einzelne Gene werden berücksichtigt sondern tausende genetische Marker

Ziel:

- Genetische Diversität bestimmen
- Hunde mit geringen Verwandtschaften finden
 - IK von Hunden berechnen

Modernes Zuchtmanagement

Sammeln genetischer Daten


Überblick über die genetischen Gegebenheiten einer Rasse

Vorausschauendes Zuchtmanagement

Optimale Nutzung genetischer Ressourcen und langfristige Erhaltung

Wichtige Infos über einzelne Hunde aber auch über die Rasse

myFERAGEN Platfform

Heterozygotie Auf die Menge kommt es an

% heterozygot vererbter Marker

Anzahl der Marker ist ausschlaggebend für die Genauigkeit

Je mehr Marker umso genauer

Nicht geeignet:

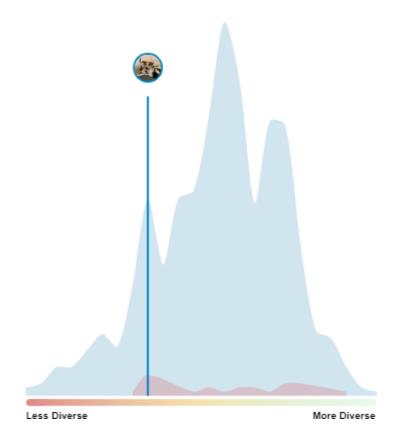
Marker für die Erstellung von DNA-Profilen!

- Zu geringe Anzahl
- Ungeeignete Markerwahl

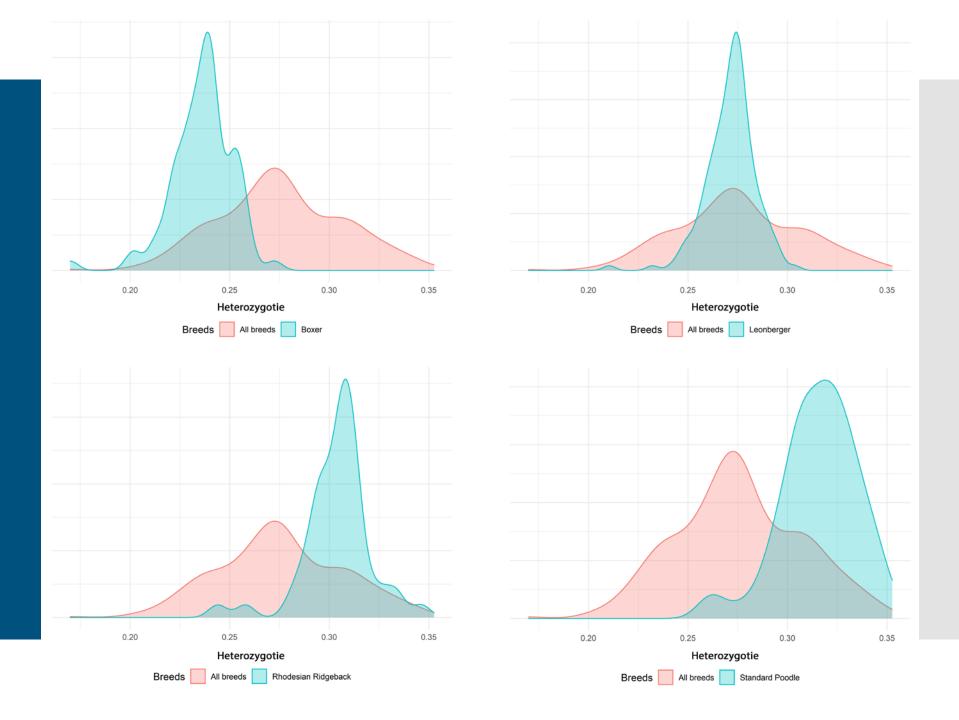
Heterozygotie Was sie aussagt

Faustregel:

Je höher der Wert, umso höher der Grad der Heterozygotie


Je nach Rasse unterschiedlich Vergleich Heterozygotie mit GIK direkter Zusammenhang Je niedriger HET umso höher Inzuchtgrad

Heterozygosity


Kromfohrländer

30.00% Leni Heterozygosity Ø35.41% Breed average Score

Heterozygosity represents the percentage of different genetic markers inherited from your pet's parents. The higher this value, the more heterozygous marker are present. High values are preferable. The blue curve represents the heterozygosity of your breed, while the red curve shows the distribution of heterozygosity from all genotyped pets in the database. The blue line indicates the value of your pet within the breed.

Beispiele Heterozygotie

Inzuchtkoeffizient

- Genetische Diversität in Zahlen ausgedrückt
- Wahrscheinlichkeit, dass 2 Allele an 1 Genort von 1 gemeinsamen
 Vorfahren stammen
- Je näher eine Blutsverwandtschaft umso höher der IK und die Wahrscheinlichkeit hoher genetischer Übereinstimmung
- Ermittlung unter Verwendung von Stammbäumen
- Abhängigkeit von der Generationszahl

Nachteile:

- Unvollständige Stammbäume
- Limitierte Zahl an Generationen
- Sicherstellung korrekter Abstammungen

Inzuchtkoeffizient

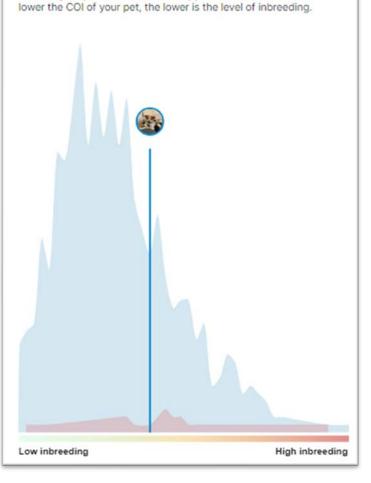
- IK aufgrund von Stammbäumen um das
 5 10-fache unterschätzt
- Vergleich von GIK und IK bestätigt dies
- Hohes Maß an Inzucht hat Auswirkung auf Gesundheit
- Negative Effekte auf Wurfgröße und Überlebensrate von Neugeborenen

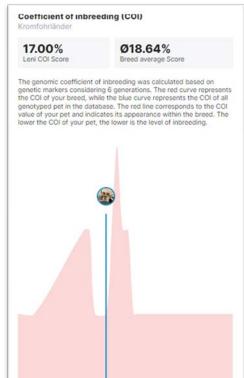
Genomische Inzuchtkoeffizienten

- Akkuratere und unabhängige Möglichkeit
- Ermittlung erfolgt basierend auf genetischen Daten

Vorteil:

- repräsentiert tatsächliche genetische Situation und Inzuchtgrad
- Ermittlung für einzelne Individuen
- Ermittlung für den Durschnitt der Rasse


IK Darstellung


Coefficient of inbreeding (COI)

Kromfohrländer

17.00% Leni COI Score Ø18.64% Breed average Score

The genomic coefficient of inbreeding was calculated based on genetic markers considering 6 generations. The red curve represents the COI of your breed, while the blue curve represents the COI of all genotyped pet in the database. The red line corresponds to the COI value of your pet and indicates its appearance within the breed. The

Coefficient of inbreeding (COI) Kromfohrländer 17.00% Ø18.64% Leni COI Score Breed average Score The genomic coefficient of inbreeding was calculated based on genetic markers considering 6 generations. The red curve represents the COI of your breed, while the blue curve represents the COI of all genotyped pet in the database. The red line corresponds to the COI value of your pet and indicates its appearance within the breed. The ower the COI of your pet, the lower is the level of inbreeding. .ow inbreeding

Beispiel IK unter Geschwistern

Abweichungen von IK-Werten bei Geschwistern

3.32 %	8.17 %	19.01 %	22.11 %	30.45 %
0.96 %	7.41 %	16.37 %	21.34 %	26.62 %
2.11 %	10.34 %	18.28 %	21.82 %	27.88 %
6.58 %	13.86 %	22.59 %	25.09 %	28.67 %
0.74 %	4.23 %	9.83 %	14.52 %	23.38 %
5.47 %	14.32 %	20.44 %	23.05 %	26.83 %
3.9 %	11.56 %	22.67 %	25.86 %	29.01 %
3.22 %	12.79 %	20.75 %	24.51 %	27.82 %

Beispiele verschiedene Rassen

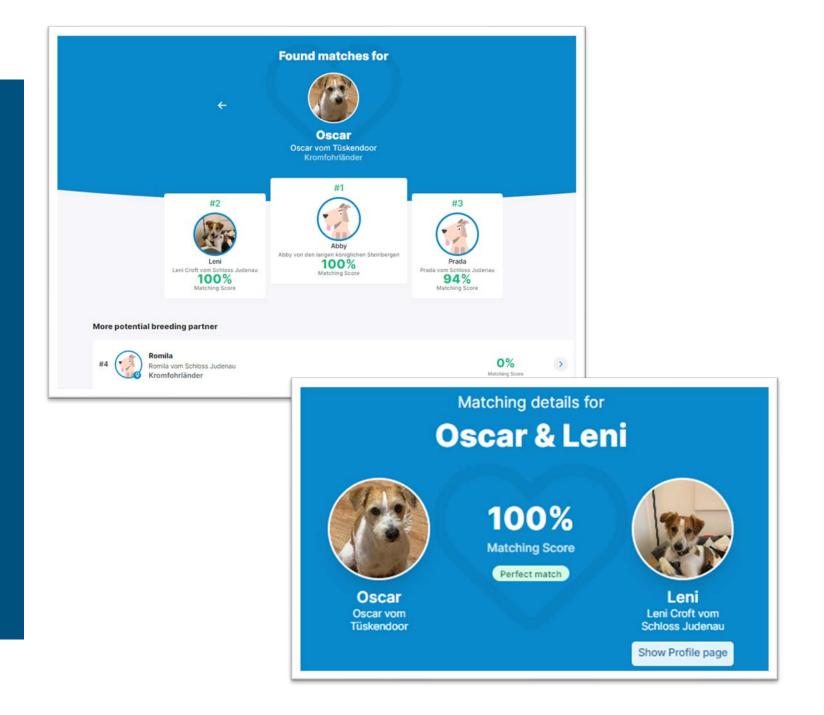
Rasse	Gen. IK %
Französische Bulldogge	3,5
Australian Shepherd	5,4
Border Collie	5,9
Labrador Retriever	7,1
Großpudel	7,2
Rhodesian Ridgeback	8,2
Beauceron	8,3
Leonberger	13,8
Collie KH	15,7
Kromfohrländer	18,3
Greyhound	19,6

Wichtig!!!

Keine Zuchtentscheidungen basierend auf isoliert betrachteten Werten! Wichtig!!!

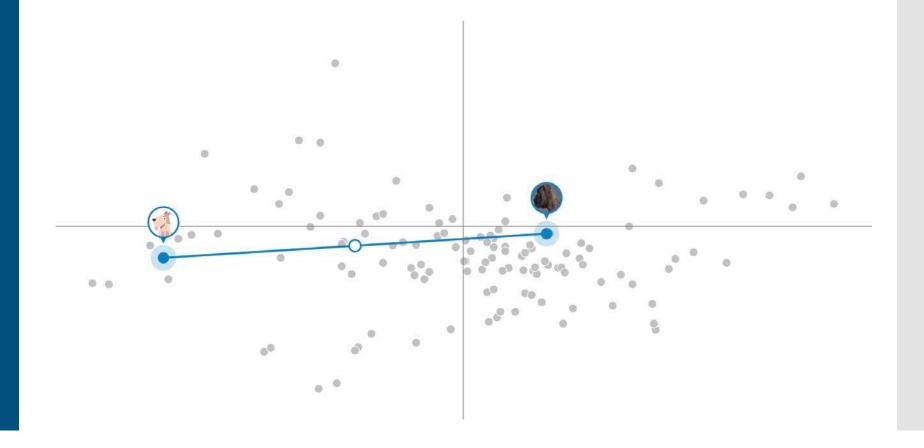
Keine Zuchtentscheidungen basierend auf isoliert betrachteten Werten!

Dog Matching Worauf es ankommt

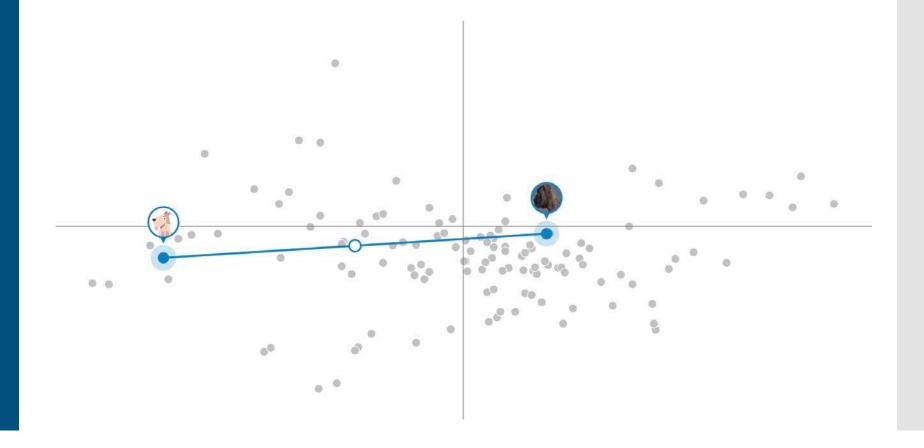

- 50% des genetischen Materials von jedem Elternteil
- Ermittlung von Mating Scores
- genetische Information von Hündin mit Rüden verglichen
- Finden genetisch optimaler Zuchtpartner

Folgende Faktoren werden berücksichtigt:

- Genetische Diversität
- Genetische Erkrankungen (sofern getestet)
- Populationsgenetischer Stellenwert einer Verpaarung
- DLA-Kombinationen


Matching Tool

Berücksichtigung von Hunden des anderen Geschlechts, der gleichen Rasse


Genetische Verteilung

Welchen Wert hat eine Verpaarung in Bezug auf die Population?

Genetische Verteilung

Welchen Wert hat eine Verpaarung in Bezug auf die Population?

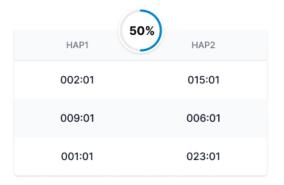
Beurteilung von Werten

1 Rüde verglichen mit 3 Hündinnen

Hündin	IK 6 Gen. genomisch	Matching Score my FERAGEN
Hündin 1	23 %	100 %
Hündin 2	22 %	97 %
Hündin 3	20 %	90 %

Individuelle IK-Wert – keine Aussagekraft
Matching-Score berücksichtigt gemeinsame Ahnen

DLA-Abgleiche & Outcomes


o Shawn

HAP1	HAP2
002:01	015:01
009:01	001:01
001:01	023:01

HAP1	HAP2
002:01	015:01
009:01	006:01
001:01	023:01

Possible outcomes

HAP1	25%	HAP2
002:01		002:01
009:01		009:01
001:01		001:01

Matching-Tool Anpassung

3 Stufenprinzip

- 1. Matching-Score
- 2. Genetische Ähnlichkeit
 - 3. DLA-Kombinationen

Information wenn beide Hunde Träger der gleichen Erkrankung sind

Take Home Message

- Beachtung genetischer Diversität in der Zucht
- Gesundheitliche Probleme aufgrund von Diversitätsverlust
- Genetische Diversität einzelner Gene DLA
- Genetische Diversität basierend auf genetischen Markern
- Datenerhebung für zukunftsorientiertes Zuchtmanagement
- Unabhängigkeit von Pedigree Daten
- Beobachten & Bewerten von Zuchtstrategien

Kontakt

support@feragen.at
+43 662 43 93 83

https://feragen.at/dna-analyse/

für Newsletter Registrierung bezüglich myFERAGEN Database

https://feragen.at/kontakt

Für Anfragen/Bestellung